If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-50x-40=0
a = 3; b = -50; c = -40;
Δ = b2-4ac
Δ = -502-4·3·(-40)
Δ = 2980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2980}=\sqrt{4*745}=\sqrt{4}*\sqrt{745}=2\sqrt{745}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{745}}{2*3}=\frac{50-2\sqrt{745}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{745}}{2*3}=\frac{50+2\sqrt{745}}{6} $
| 243-w=297 | | -24+p=-4(p+1) | | 12+6=76(2y+1) | | 3(x+2)+2=-7 | | 6*6^-2x=64 | | 2+4x=-6+5x | | 3x+47+10=27+x+26+x | | 297-w=297 | | 8x+48-10+x=3 | | -6-7a=-8a-13 | | x^=90 | | d/5=1/4 | | 15-1/5x=1/6x-1 | | -2(-9v+3)-v=3(v-4)-4 | | 55x+9-30x=46 | | 8m+8(7m+5)=-472 | | 4(-4k+3)=8k-6(k+4) | | 11+x/2=47 | | 0.7x-6=0.2x | | 12m^2-5m-24=0 | | F(x)=5(-3) | | X^2+3y+90=180 | | 5(-1+3b)=5(7+4b) | | 5(-1+3b)=5(7+4b | | 12=-9x | | x+0.75x+0.25x=1 | | 8x+3.6=68.4 | | 41=−2x^2+20x | | 9x2+12x–24=0 | | -35+6n=-7+4(6n-7) | | -49=-7n-6(8n-1 | | 0.08(y-8)+0.06y=0.18-0.7 |